Well-Covered Graphs Without Cycles of Lengths 4, 5 and 6
نویسندگان
چکیده
A graph G is well-covered if all its maximal independent sets are of the same cardinality. Assume that a weight function w is defined on its vertices. Then G is w-well-covered if all maximal independent sets are of the same weight. For every graph G, the set of weight functions w such that G is w-well-covered is a vector space. Given an input graph G without cycles of length 4, 5, and 6, we characterize polynomially the vector space of weight functions w for which G is w-well-covered. Let B be an induced complete bipartite subgraph of G on vertex sets of bipartition BX and BY . Assume that there exists an independent set S such that each of S ∪BX and S ∪ BY is a maximal independent set of G. Then B is a generating subgraph of G, and it produces the restriction w(BX) = w(BY ). It is known that for every weight function w, if G is w-well-covered, then the above restriction is satisfied. In the special case, where BX = {x} and BY = {y}, we say that xy is a relating edge. Recognizing relating edges and generating subgraphs is an NP-complete problem. However, we provide a polynomial algorithm for recognizing generating subgraphs of an input graph without cycles of length 5, 6 and 7. We also present a polynomial algorithm for recognizing relating edges in an input graph without cycles of length 5 and 6.
منابع مشابه
Well-dominated graphs without cycles of lengths 4 and 5
Let G be a graph. A set S of vertices in G dominates the graph if every vertex of G is either in S or a neighbor of a vertex in S. Finding a minimal cardinality set which dominates the graph is an NP-complete problem. The graph G is well-dominated if all its minimal dominating sets are of the same cardinality. The complexity status of recognizing well-dominated graphs is not known. We show that...
متن کاملOn list vertex 2-arboricity of toroidal graphs without cycles of specific length
The vertex arboricity $rho(G)$ of a graph $G$ is the minimum number of subsets into which the vertex set $V(G)$ can be partitioned so that each subset induces an acyclic graph. A graph $G$ is called list vertex $k$-arborable if for any set $L(v)$ of cardinality at least $k$ at each vertex $v$ of $G$, one can choose a color for each $v$ from its list $L(v)$ so that the subgraph induced by ev...
متن کاملWeighted Well-Covered Graphs without Cycles of Length 4, 6 and 7
A graph is well-covered if every maximal independent set has the same cardinality. The recognition problem of well-covered graphs is known to be co-NP-complete. Let w be a weight function defined on the vertices of G. Then G is w-well-covered if all maximal independent sets of G are of the same weight. The set of weight functions w for which a graph is w-well-covered is a vector space. We prove...
متن کاملOn Well-Covered, Vertex Decomposable and Cohen-Macaulay Graphs
Let G = (V,E) be a graph. If G is a König graph or if G is a graph without 3-cycles and 5-cycles, we prove that the following conditions are equivalent: ∆G is pure shellable, R/I∆ is Cohen-Macaulay, G is an unmixed vertex decomposable graph and G is well-covered with a perfect matching of König type e1, . . . , eg without 4-cycles with two ei’s. Furthermore, we study vertex decomposable and she...
متن کاملPlanar Graphs without Cycles of Speciic Lengths
It is easy to see that planar graphs without 3-cycles are 3-degenerate. Recently, it was proved that planar graphs without 5-cycles are also 3-degenerate. In this paper it is shown, more surprisingly, that the same holds for planar graphs without 6-cycles.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Discrete Applied Mathematics
دوره 186 شماره
صفحات -
تاریخ انتشار 2015